按技术领域分类
机械加工设备模型
如机床(车床、铣床、加工中心)、冲压设备、铸造设备等,重点体现机械传动结构、运动轨迹和加工工艺。
动力设备模型
如发动机、汽轮机、压缩机等,注重内部热力循环、流体力学原理的展示。
自动化设备模型
如工业机器人、流水线生产线、智能仓储设备等,强调控制系统、传感器布局和协同作业流程。
特种设备模型
如化工反应釜、矿山机械、航空航天设备等,需结合特定行业标准和工况进行建模。
数字孪生技术
将物理设备与数字模型实时映射,通过传感器采集数据驱动模型动态更新,实现 “虚拟监控实体、实体反馈虚拟” 的闭环。
应用场景:智能工厂中,数字孪生模型可实时显示生产线设备的运行参数,辅助远程运维。
典型工业设备模型案例
数控机床模型
物理模型:展示主轴、刀库、导轨等关键部件的装配关系,用于职业院校教学。
数字模型:通过 CAM 软件生成加工路径,模拟零件切削过程,优化刀具轨迹。
工业机器人模型
数字模型:在 RobotStudio 等软件中仿真机器人抓取、焊接等动作,验证轨迹规划的合理性。
数字孪生模型:连接真实机器人的编码器数据,实时显示关节角度和负载状态。
化工设备模型
概念模型:用流程图表示反应釜、换热器、管道之间的物料流动和化学反应过程。
物理模型:按比例缩小的精馏塔模型,展示内部塔板结构和传质原理。
精度与表面处理
低精度模型:
允许尺寸误差 ±2mm,表面粗糙(如 3D 打印未打磨),成本较低。
高精度模型:
误差控制在 ±0.1mm 以内,表面需抛光、电镀、喷漆等工艺(如镜面效果、金属拉丝),成本可增加 30%-50%。
案例:
汽车厂商用于展览的 1:1 发动机模型,经精细涂装和纹理处理后,成本可能从基础款的8 万元升至15 万元。